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Abstract 

A fundamental debate within cognitive science concerns how 
infants, children, and adults learn about the motion properties 
of animates and inanimates. In this paper, we show that an as-
sociative-learning mechanism implemented as a neural net-
work can use animacy relations to predict and discriminate 
between familiar and novel causal and noncausal events. This 
is possible because (1) animate objects are more similar to 
each other than to inanimate objects, (2) causal events are 
more likely to have animate agents and inanimate recipients 
than noncausal events, (3) noncausal events are more likely to 
have animate (i.e., self-propelled) “recipients”, and (4) causal 
and non-causal events correlate with different types of mo-
tions. The results suggest that the emergence of concepts for 
animacy and causality in infancy and beyond can be ex-
plained without theory-driven top-down processing or special-
ized modules.    

Introduction 
Over the past twenty years, infants’ perception and under-
standing of causality has received increasing attention in the 
developmental literature. This burgeoning interest reflects a 
theoretical consensus that an appreciation of cause and ef-
fect relations is a cornerstone of the ability to understand the 
way the world works. It is now well established that infants 
in the first year of life are sensitive to aspects of causality 
including agency and recipiency. Leslie and Keeble (1987) 
showed 6½- to 7-month-old infants a series of simple 
launching events based on those developed by Michotte 
(1963). In the direct launching condition, infants were ha-
bituated to a green brick-shaped object that moved from left 
to right across a screen and contacted a red brick-shaped 
object that then moved in the same direction until off the 
screen. In the delayed launching condition, infants were 
habituated to similar events except that there was a short 
delay between impact and reaction. During the test phase for 
both conditions, infants were presented with the same basic 
event seen during the habituation phase except that it was 
reversed.  

The rationale for this design was that the reversal 
of the direct launching event switched the agent-recipient 
relationship and the spatiotemporal properties from those 
seen during habituation but the reversal of the delayed 

launching event affected the spatiotemporal properties 
alone. Infants at 7 months of age who were habituated to the 
direct launching event recovered visual attention to the re-
versal more than the infants who were habituated to the de-
layed launching event. Leslie and Keeble (1987) interpreted 
these results to mean that infants in the direct launching 
condition were sensitive to the causality in the event. These 
results were extended by Oakes and colleagues (Oakes & 
Cohen, 1990; Cohen & Oakes, 1993) who found that infants 
at 6 months are unable to discriminate causal from non-
causal events.  

An important theoretical question that has been 
hotly debated concerns when and how infants learn that 
animates tend to act as agents and that inanimates tend to 
act as recipients of a causal action. According to one per-
spective, the complexity of the learning space implies that 
perceptually-based associative processes that allow infants 
to represent causality in simple Michotte-like events are 
insufficient to account for how they acquire concepts that 
include motion characteristics of different object kinds. 
More generally, it has been suggested that associative learn-
ing alone cannot act as the foundation for early representa-
tions because there are so many correlations in the world to 
which one could attend that it is impossible to know which 
ones are important for category membership and which are 
not (Keil, 1981). 

As a solution to these problems, a number of theo-
retical frameworks proposed that knowledge about the mo-
tion properties of animates and inanimates is acquired via 
innate specialized processes or modules (e.g., Leslie, 1995; 
Mandler, 1992; Gelman, 1990; Premack, 1990). Leslie 
(1994, 1995), for example, theorized that infants possess 
three innately derived modules that, in combination, allow 
infants rapidly to develop an understanding of the physical 
(theory of body), psychological (theory of mind), and cogni-
tive properties of animates and inanimates. According to 
Mandler (1992, 2000, 2003), infants possess an innate spe-
cialized process called perceptual analysis that recodes the 
perceptual display into an abstract and accessible construct. 
This process generates image-schemas, or conceptual primi-
tives, that summarize crucial characteristics of objects’ spa-
tial structure and movement such as agency and recipiency. 

There are a number of problems with these ac-
counts. First, there is little, if any, direct evidence that in-
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fants possess innate modules or specialized mechanisms that 
allow them to encode distinct kinds of information (and in 
particular, motion characteristics). It also remains opaque 
how an appropriate module or mechanism is “triggered” by 
certain kinds of input but not others. Second, the notion that 
infants possess two separate mechanisms for concept forma-
tion – one for perceptual information and one for conceptual 
information—is unparsimonious and creates a heavy bio-
logical burden (Quinn & Eimas, 2000; Quinn, Johnson, 
Mareschal, Rakison, & Younger, 2000; Rakison & Hahn, 
2004). Third, in the absence of empirical evidence it is un-
clear how a specialized process—for example, perceptual 
analysis—abstracts dynamic, motion related information 
into a simpler, more available form or whether such a proc-
ess is different from perceptual categorization of movement 
patterns (Quinn & Eimas, 2000; Rakison, 2003). With these 
problems in mind, we propose that there are sufficient regu-
larities in the world for an associative mechanism to account 
for learning in this domain. The goal of the current work 
was to test this proposal.  
 The use of Michotte launching tasks to study cau-
sality has been modeled before by Chaput & Cohen, 2001. 
The current paper differs in significant ways from this 
model, the most notable of which is the use of representa-
tions of real-world objects, allowing us to use their distribu-
tional statistics to test the claim that an associative-learning 
mechanism with no theory of causality or animacy can use 
the emergent animacy distinction to discriminate causal 
events from noncausal events and generalize its learning to 
novel scenes. 

Aims 
Through analysis of semantic representation corpora we aim 
to show that animacy emerges as a highly salient distinction. 
With no theory of animacy on the part of the learner, ani-
mates may nevertheless cluster in the conceptual space with 
other animates, and inanimates with other inanimates. We 
proceed to show that an associative-learning mechanism 
(implemented as a neural network) can use this property of 
clustering among animates and inanimates to predict 
whether novel events show a causal or noncausal relation-
ship, while also predicting what types of motion the objects 
in the events should engage in. The model additionally ex-
amines whether this mechanism is sufficient to demonstrate 
the kinds of dishabituation patterns reported in the empirical 
literature, for instance, dishabituating to noncausal events 
when trained on causal events. 

The structure of animacy 
Our first step was to determine whether animacy is 

indeed a salient feature in concept representations. We 
coded the animacy status of the 539 objects in the McRae et 
al. corpus (in press) and then performed a principal-
components analysis on the between-concept cosine matrix 
for all the concepts. For instance, the entry for “alligator” 
had a value of 0 for “airplane” (i.e., alligators and airplanes 
shared no features produced by the raters), 0.13 for apple, 

0.02 for axe, and so on. To quantify the degree to which the 
animacy distinction is represented in the correlation matrix, 
we then performed a K-means cluster analysis on the first 
50 principal components of the matrix. Of the 138 animate 
concepts, 134 (97.1%) were correctly classified. Of the 401 
inanimate concepts, 399 (99.5%) were correctly classified, 
χ2=502.80, p<.0005 (Figure 1). The animate concepts that 
were incorrectly classified by the algorithm were python, 
snail, worm, and caterpillar, and the 2 misclassified inani-
mates were airplane, and jet. Notice that all the incorrectly 
classified animates lack legs. Of the incorrectly classified 
inanimates, airplane and jet arguably have movement as a 
prominent property—evidence that motion properties are 
critical to animacy. Additionally, we found that animates 
were more tightly grouped, having on average significantly 
smaller distances from the cluster centroid than inanimates: 
two-sample t-test not assuming equal variance, t(352) = 
14.11, p<.0005.  

One objection to drawing inferences concerning 
the salience of animacy in concepts using the method just 
described is that some features provided by the human raters 
were directly related to animacy. For instance, animal con-
cepts had the feature “is animal”; therefore all animals 
would correlate with each other based on at least that one 
feature. If features related to animacy are the most consis-
tent (as in the case of animals possessing the “is animal” 
feature), a separation of animate and inanimate concepts 
based on the concept correlation matrix would be merely a 
confirmation that features related to animacy are ones most 
consistently provided by adults, and that these features are 
sufficient to cluster animates and inanimates, which al-
though interesting does not address the question of how 
infants would know which objects are animals. After all, if 
animacy the distinction comes from features such as “is 
animal,” infants would first have to be innately sensitive to 
these features, a position we reject. 

To provide an independent confirmation of the idea 
that animacy is a salient factor in item concepts, we applied 
the same clustering procedure to a completely different se-
mantic corpus—the correlated occurrence analogue to lexi-
cal semantics (COALS: Rohde, Gonnerman, & Plaut, 2006; 
http://dlt4.mit.edu/~dr/COALS/). Rather than being based 
on features provided by human raters, the semantic repre-
sentations in this corpus are automatically generated from 
large text corpora (the method is similar to HAL, developed 
by Lund and Burgess, 1996). The algorithm produces vec-
tors with similarity relations based on the similarity of the 
contexts in which the words are used. Relationships be-
tween semantic vectors generated by the COALS method 
have been shown to correlate well with similarity ratings 
provided by human raters. Other than not coding for specific 
features, an advantage of COALS-generated representations 
for present purposes is that this method has been optimized 
to produce binary vectors, which are suitable for use in 
training neural networks. 

For consistency, we performed this analysis on the 
same concepts that were coded in the McCrae et al. (in 

526



press) corpus. Because corpus-based semantic representa-
tions cannot differentiate between homonyms, we removed 
words with obvious dual meanings (e.g., “bat”), leaving 513 
concepts. Applying K-means cluster analysis to the first 
binary 50 binary dimensions of the representations revealed 
that animacy was saliently represented. Of the 379 inani-
mate concepts, 316 (83%) were correctly classified. Of the 
134 animate concepts, 119 (89%) were correctly classified, 
χ2=225.3, p<.0005. The animates were again found to be 
more tightly clustered than the inanimates, t(176)=6.71, 
p<.0005. This lower, but still impressively high clustering 
results from analyzing a highly compressed dataset: 50-
dimensional binary vectors from—the full corpus contains 
1,500 real-valued dimensions for each concept. The cluster-
ing is possible with no reliance on explicit features gener-
ated by humans.  
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Figure 1:  A score plot of the first 2 principal components of 

the 50-dim concept vectors, grouped by animacy. 

From animacy to causality 
The clustering of animates and inanimates leads to the pre-
diction that after observing animates and inanimates interact 
in “causal” and “noncausal” ways, an associative-learning 
mechanism should be able to generalize the learned patterns 
to novel scenes. For instance, after observing that a cat 
caused a ball to roll through physical contact, an infant 
could infer that a dog would need to make contact with a 
pencil to make it move. To test this hypothesis in the current 
model, we trained a connectionist network on “scenes” con-
structed from the concepts listed in the McRae et al. (in 
press) corpus. Each “scene” consisted of two objects and a 
motion. The objects were randomly chosen from the corpus 
consistent with the animacy relations shown in Table 1. The 
motions depended on the intended “causality” of the action. 
Causal actions involved the direct motion while noncausal, 
actions (indicating self-propulsion) had a gap, delay, or 
gap+delay motion. The probabilities used to generate the 
relations are meant to correspond roughly to the real world, 
but the results we report do not depend on the precise values 
shown in Table 1. 

The hypothesis that an associative learning mecha-
nism should generalize “causality” to novel scenes was 
tested in three ways. First, we examined whether after being 
trained on a subset of causal and noncausal scenes, the net-
work could predict the correct causal or noncausal motion 
when presented with new scenes. Second, we explored 
whether the network showed an increase in error when the 
exemplars typically associated with a causal scene (e.g., 
animate agent, inanimate recipient) are mismatched with a 
noncausal motion (or vice-versa). An increase in error indi-
cates a violation of expectations. And because looking is 
associated with a violation of expectations (Gilmore & 
Thomas, 2002), error has been used as a proxy for looking 
time (Sirois & Mareschal, 2001). A reliable increase in error 
in a network is therefore comparable to dishabituation. 
Third, we tested whether, after training, the hidden represen-
tations of the network clustered the causal and noncausal 
events into separate groups when tested on novel scenes.  

Method 
Architecture 
The model was implemented as a simple recurrent network 
(SRN; Elman, 1990) trained using a variant of standard 
backpropagation with momentum (Rohde, 1999). The input 
consisted of patterns of activity across three groups of units, 
corresponding to the first object, the second object, and the 
motion in the scene (see Materials below). The input layers 
were fully connected to hidden units which in turn projected 
to a “context group” and the output groups (Figure 2).  The 
context group projected back to the hidden layer using copy-
back connections, providing the network with a simple form 
of memory, necessary to learn the temporal sequence of the 
motions involved in the training scenes. 
 
Materials 
We used the binary semantic vectors generated using the 
COALS method (Rohde et al., 2006). Fifty dimensions were 
used. Motion was represented using an 8-unit layer. On each 
timestep a single bit in the motion layer was active accord-
ing to the current position of the first or second object. The 
networks’ task was to map the object layer to itself (auto-
association), and predict the correct active bit of the motion 
layer occurring at the next time-step. There were four types 
of motion: direct—a smooth linear motion corresponding to 
one object contacting the other, and the second object start-
ing to move after the contact; gap—identical to direct ex-
cept for a spatial gap in the middle of the event, correspond-
ing to smooth movement, but no contact; delay—identical 
to gap except for a temporal rather than a spatial interrup-
tion; gap+delay—a combination of both a spatial and a 
temporal gap. The direct motion was associated with the 
causal events, while the gap/delay/gap+delay motions were 
randomly paired with the noncausal events. 
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Figure 2:  A simplified schematic of the simple-recurrent 

network architecture. All input and output groups are sym-
metrically connected to the hidden units. See text for details. 
 
 The training corpus consisted of 60 scenes each 
composed of two objects and a motion. Animate and inani-
mate concept vectors were randomly selected from the cor-
pus and loaded into the Object1 and Object2 layers, respec-
tively in accordance with probabilities in Table 1. For in-
stance, 75% of the causal scenes consisted a randomly cho-
sen animate first object, and a randomly-chosen inanimate 
second object. All causal scenes involved a direct launching 
event and one of the three noncausal events (gap, delay, 
gap+delay) was randomly chosen for each of the noncausal 
scenes. An additional 60 scenes were then generated for 
testing the network. 
 
Procedure and training 
Ten networks were trained for 150 epochs on 60 scenes ran-
domly generated in accordance with the relations in Table 1. 
As with previous simulations, the motion layer was made 
more salient by increasing its output error and derivatives by 
a factor of 15 (a factor of 15 was used throughout the simu-
lations in this paper whenever the global motion was the 
only moving part of the scene). 
 

Table 1:  Causal structure of the scenes used in training. 
 
 1st Object 2nd Object Motion Prob. 
Causal 
 

 
Animate 

 
Inanimate 

 
direct 

 
.75 

 Animate Animate direct .25 
Non-
causal 
 
 
 

 
 
Inanimate 

 
 
Animate 

 
 
Gap/Delay/
Gap+Delay 

 
 
.50 

 Animate Animate Gap/Delay/
Gap+Delay 

.50 

 
Testing 
The first test of the hypothesis consisted of comparing 
which motions were predicted by the network when it was 
presented with a novel scene. The outputs of the motion 
layer were compared against the four types of motion: di-
rect, gap, delay, and gap+delay. The motion pattern with the 
smallest Euclidean distance from the network’s output was 
taken as the response of the network for that particular 
scene.  

One alternative to our contention that the network 
has learned to predict the causal and noncausal motions 
based on the animacy relations of the objects in the scene is 
the possibility that the network is predicting the motion in-
dependently of the objects involved. Because novel non-
causal scenes have corresponding noncausal motions, the 
network may be abstracting over the objects and merely 
using the motion in the input layer to predict the motion at 
the output motion layer. To test for this possibility, we 
tested the network on novel scenes in which all motions 
were of the same causality type. If the network is generaliz-
ing the animacy of novel scenes and using this information 
to predict the motion, it should show a higher error when 
presented with a noncausal scene having a causal motion 
(noncausal-to-causal switch). The network should also 
show a higher error when presented with a causal scene hav-
ing noncausal motions (causal-to-noncausal switch). To 
perform this comparison we compared the motion predicted 
by the network with the motion actually observed (e.g., al-
ways the direct motion for the noncausal-to-causal switch 
trials). 

Finally, we examined the activations of the hidden 
units to see whether the network’s representations group 
into causal and noncausal clusters. If this were found to be 
the case, it would provide an added demonstration that the 
network is learning to predict the causality of the scene 
based on the observed animacy relationship between the 
objects. We recorded the hidden-unit activations in the lar-
ger of the network’s two hidden layers, and then performed 
K-means cluster analysis to determine whether this simple 
algorithm can correctly identify the representations of the 
causal and noncausal scenes. Because the network is recur-
rent, the representations evolve over time. We chose to ex-
amine the representations from the last timestep of each 
trial. At this point, all the motions are identical (i.e., they 
already occurred), meaning that any differences in represen-
tations can only result from the animacy relation of the ob-
jects in the scene, and a memory trace of what the motion 
was several timesteps prior. 

Results 
Table 2 shows the distribution of responses of trained net-
works tested on novel scenes. The results are averages of 10 
networks trained and tested on separate 60-scene sets ran-
domly constructed from the corpus containing the full 513 
concepts. On average, the networks selected the direct mo-
tion 89.9% of the time when presented with a novel 

Object1 Object2 
Motion 

Input Groups 

Output Groups 

Hidden Units 
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“causal” scene, and 18.2% of the time when presented with 
a novel “noncausal” scene. Collapsing across the types of 
non-causal motions, the network selected a noncausal re-
sponse 81.8% when presented with a noncausal scene, but 
only 10.1% for the causal scene. The response patterns were 
significantly different in the two groups: Kruskal-Wallis test 
for group median, z = 13.9, p<.0005. 

Table 2:  Motion predictions (in percent) of novel causal 
and non-causal scenes. 
 Direct 

Launch 
Gap Delay Gap+Delay 

Causal 
 

89.90 0.35 0.00 9.76 

Non-
causal 

18.21 29.39 35.14 17.25 

 
To ensure that this response pattern did not merely 

indicate a sensitivity to the motion type, we compared the 
networks’ motion predictions when presented with causal 
and causal-to-noncausal switch trials. As predicted, when 
networks were tested on noncausal scenes with causal mo-
tions, the errors were significantly higher than when tested 
on causal scenes with their expected causal motions: re-
peated measures mixed ANOVA with network as a random 
factor and scene-type as a fixed factor: F(1,9) = 47.29, 
p<.0005. To test that this effect did not result from a bias of 
the network to predict the direct motion, we also performed 
the complementary analysis of the causal-to-noncausal mo-
tion switch. As predicted, this showed the reverse pattern of 
a higher error to causal scenes with a noncausal motion than 
to causal scenes with a noncausal motion, F(1,9) = 7.31, 
p<.03. There was also a significant interaction between 
scene type and switch-type, F(1,18) = 28.32, p <.0005. The 
amount of error change from the “familiar” to the switch 
trials was not different in the two motion switch conditions, 
t(18) = 0, p>.5. 

Lastly, we performed a K-means cluster analysis 
on the hidden activations produced by the network when 
presented with novel causal and noncausal scenes. The algo-
rithm classified 80.7% of the causal scenes correctly, and 
79.3% of the noncausal scenes correctly, χ2=21.57, p 
<.0005. Note that this classification is not merely reflective 
of animacy of individual objects (both causal and noncausal 
scenes have animate and inanimate objects), but reveals a 
sensitivity to the relation between the objects as well as 
learning which kinds of motions go with which types of 
scenes. We can confirm this claim by determining whether 
the statistics of the input alone are sufficient to establish the 
causality nature of the scene.   

Is learning about motion necessary? 
It may be argued that given the initial clustering of the con-
ceptual representations into animates and inanimates, the 
network may be able to cluster scenes into causal and non-
causal even without learning to associate which motions go 

with what scenes. Because the input statistics are sufficient to 
cluster concepts into animates and inanimates, it may be pos-
sible to predict causality even without having to learn the 
correlation between animacy relations and the motion. Per-
forming an identical K-means cluster analysis on an untrained 
network revealed that the input statistics were indeed suffi-
cient to group together the causal scenes, but not the non-
causal scenes.  The untrained network correctly classified 
80.7% of the causal scenes, but only 55.2% of the noncausal 
scenes. In other words, the animacy clustering in the corpus 
combined with the statistics shown in Table 1 were sufficient 
to cluster together the causal scenes, but insufficient to cluster 
together the noncausal scenes and separate their representa-
tions from those of the causal scenes. 

Discussion 
The current simulation demonstrates that a connectionist 
model can use animacy relations to predict the causality struc-
ture of both familiar and novel scenes. This is possible be-
cause (1) animate objects are more similar to each other than 
to inanimate objects, (2) causal events are more likely to have 
animate agents and inanimate recipients than noncausal 
events, (3) noncausal events are more likely to have animate 
(i.e., self-propelled) “recipients”, and (4) causal and non-
causal events correlate with different types of motions. The 
model produces these results without relying on any explicit 
representations of either animacy or causality. 

The concept representations we used in the model 
were based on word co-occurrences in a large corpus. Clearly, 
infants do not have access to such a knowledge-base. How-
ever, considering the salience of animacy in these representa-
tions (e.g., it is evident from the first two principal compo-
nents of an already highly reduced vector set), it is reasonable 
to suggest that infants, particularly those toward the end of 
the second year of life, are similarly sensitive to the animacy 
distinction (Rakison, 2005, in press). Here, we demonstrated 
how this sensitivity to animacy in turn enables an associative-
learning device to learn to classify causal and noncausal 
events. 

Learning about motions, in particular, is important 
for correctly classifying noncausal events. The added diffi-
culty of learning about noncausal events compared to causal 
events has been empirically confirmed. Rakison (2005) has 
found that 14-month-olds successfully learned animacy rela-
tions (i.e., dynamic agent, passive recipient), but also learned 
relations inconsistent with the real world—static agent, dy-
namic recipient). Sixteen-month olds, on the other hand, only 
learned the relation consistent with the real world. An ex-
tended version of the current model has been used to replicate 
this developmental trend (Rakison & Lupyan, 2006).  
 Our results obviate the need for theory-driven top-
down processing or specialized modules for explaining the 
emergence of causality concepts in infancy. The results also 
strongly argue that Original Sim—the idea that the abundance 
of potential correlations that can be encoded means that it is 
impossible to know which ones are important for category 
membership (Keil, 1981)—is misguided. It is true that one 
does not “know” which features are important for category 
membership—in this case for categorizing causal and non-
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causal events—but one does need to know which features are 
important. While the problem space in the current simulation 
is rudimentary compared to the real world, it is nothing if not 
complicated.  The “features” used in the representations do 
not correspond to any ordinary features—there are no units 
for shape, color, size, and of course, no explicit representa-
tions of animacy. Nevertheless, there is no problem with 
“finding” the features that are relevant to animacy or causal-
ity—the statistical structure of the input coupled with learning 
about motion properties is sufficient to predict causality. 
While we agree that theory-driven processing (e.g., Gopnik & 
Nazzi, 2003) may be required to reason explicitly about 
causal relations, such explicit reasoning is not required to 
categorize causal and noncausal events. 
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